Okaya, Y. (1967). Acta Cryst. 22, 104-110.

Sheldrick, G. M. (1990). Acta Cryst. A46, 467-473.

- Sheldrick, G. M. (1993). SHELXL93. Program for the Refinement of Crystal Strutcures. Univ. of Göttingen, Germany.
- Teplova, T. B., Turskaya, T. N., Shibanovo, T. A., Nekrasov, Yu. V. & Belikova, G. S. (1986). Kristallografiya, **31**, 187–189.
- Teplova, T. B., Turskaya, T. N., Tovbis, A. B., Zavodnik, V. E., Shibanovo, T. A. & Belikova, G. S. (1984). Kristallografiya, 29, 726-730.

Acta Cryst. (1995). C51, 871-873

An Unexpected By-Product in the Friedel–Crafts Acrylation of Ferrocene

TINA M. TRNKA AND ROBERT C. KERBER

State University of New York at Stony Brook, Long Island, New York 11794-3400, USA

(Received 20 April 1994; accepted 27 October 1994)

Abstract

The structure of an unsaturated [3]ferrocenophane derivative, 1,1'-(1-ferrocenyl-1,3-propenediyl)ferrocene, [Fe₂(C₅H₅)(C₁₈H₁₅)], has been determined. Because of the double bond, the three-carbon bridge and the directly attached C atoms are essentially coplanar. Strain in the bridged structure is manifested in a ring-tilt angle of 12.3° and in opening of the angles in the bridge.

Comment

The Friedel-Crafts reaction of ferrocene with acrylyl chloride and aluminium chloride constitutes a very convenient one-pot synthetic route to the bridged [3]ferrocenophane system (Turbitt & Watts, 1972). We obtained results somewhat inconsistent with the published procedure in which a dichloromethane solution of acrylyl chloride was added to a solution containing aluminium chloride and ferrocene, but were able to obtain higher and more consistent yields of the desired [3]ferrocenophane-1-one (1) by initial formation of an acid-base complex of acrylyl chloride and aluminium chloride, followed by addition of the complex in dichloromethane solution to a solution of ferrocene at 238 K. Under these conditions, 30-60% yields of the ferrocenophanone were obtained, along with about 10% of propanoylferrocene (2) and a less polar by-product (3). The latter material, (3), melted with decomposition at 423 K. Mass spectral data suggested the composition to be $Fc_2C_3H_2$ (Fc = $C_5H_5FeC_5H_4$), but good NMR spectra were not obtainable because of insufficient solubility. The product formed clusters of red crystals upon recrystallization from a hexane-dichloromethane mixture and these crystals were used for the structure analysis.

The crystal structure reveals the by-product to be an unsaturated [3]ferrocenophane derivative, 1-(ferrocenyl)- Δ^1 -[3]ferrocenophene. Formation of this product from the [3]ferrocenophanone by acid coordination to the keto group, attack of the cation on an unsubstituted ferrocene and dehydration of the resulting tertiary alcohol is readily envisaged.

Because of the double bond in the three-carbon bridge, atoms C1, C23, C11, C22 and C21 form a plane approximately orthogonal to the planes of the two cyclopentadienyl rings of the bridged ferrocene. The tilt angle between the two rings of the bridged ferrocene unit is 12.3°; this value falls within the normal range of about 7-14° found in other [3]ferrocenophanes, e.g. 7.4° in 1,1'-trimethyleneferrocene (Hillman & Austin, 1987), 8.8° in [3]ferrocenophan-1-one (Jones, Marsh & Richards, 1965), 10° in 1,1'-(α -keto- γ -phenyltrimethylene)-2'-methylferrocene (Lecomte, Dusausoy, Protas & Moïse, 1973), 10° in 3,3'-trimethylene-[1.1]ferrocenophane (Singletary, Hillman, Dauplaise, Kvick & Kerber, 1984), 12° in 2,2'-trimethylene[1.1]ferrocenophane (Singletary et al., 1984), 12.9 and 13.6° in 1,1'-(propane-1,3-diyl)ferrocenium iodide (Dong et al., 1991) and 13.6° in 2-benzylidene[3]ferrocenophane-1,3-dione (Gyepes, Glowiak & Toma, 1986). In addition, both ferrocene units are eclipsed, and the disorder

Fig. 1. ORTEPII (Johnson, 1976) drawing of 1-(ferrocenyl)-Δ¹-[3]ferrocenophene with 50% probability displacement ellipsoids.

commonly found in saturated trimethylene-bridged ferrocenophanes (Singletary *et al.*, 1984) is absent. Strain in the bridge is manifested in the C—C—C bond angles of 119.2 (2)° for the sp^3 C atom (C21) and 131.1 (3) and 123.9 (2)° for the sp^2 C atoms (C22 and C23).

The C—H distances in the final structure range from 0.81 to 1.04 Å (average 0.91 Å) and the isotropic B values range from 1.9 to 5.6 Å².

Experimental

Crystal data

Crystal	aata							
$[Fe_2(C_5H_5)(C_{18}H_{15})] \qquad Mo \ K\alpha \ radiation$				Table 2 Selected geometric parameters (\mathring{A} °)				
$M_r = 408.11 \qquad \qquad \lambda = 0$			= 0.71073 Å		Table 2.	Selected geom	en ic parameter	3 (A ,)
Triclinic			ll parameters fi	rom 25	Fe1—C1	2.059 (3)	C2—C3	1.412 (4)
P1			reflections		Fe1—C2	2.034 (3)	C3C4	1.406 (5)
a = 7.652(2) Å			$\theta = 13 - 17^{\circ}$		Fel—C3	2.031 (3)	C4 - C3	1.410 (4)
u = 7.032(2) A b = 0.716(2) Å			$v = 1.744 \text{ mm}^{-1}$		Fel—C4	2.037 (3)	C6C10	1.410 (4)
U = 9.7	10(2) A	$\mu \cdot \tau$	- 1./44 mm		Fe1—C6	2.030 (3)	C7-C8	1,400 (4)
c = 11.	/5/(3) A	1 =	= 298 K		Fe1—C7	2.042 (3)	C8—C9	1.409 (5)
$\alpha = 94$.66 (3)°	Irre	egular		Fe1—C8	2.040 (3)	C9-C10	1.413 (4)
$\beta = 98.25 (4)^{\circ}$			$2 \times 0.2 \times 0.1$ i	nm	Fe1—C9	2.042 (3)	C11—C12	1.426 (4)
$\gamma = 104$	4.17 (4)°	Re	Red		Fe1—C10	2.042 (3)	C11—C15	1.428 (4)
V = 832	2.52 (4) Å ³				Fe2—C11	1.989 (2)	C11—C23	1.486 (4)
Z = 2	.,				Fe2—C12	2.023 (3)	C12—C13	1.410 (4)
D - 1	628 Mg m^{-3}				Fe2—C13	2.057 (3)	C13C14	1.409 (5)
$D_{\rm X} = 1$.020 Mg III				$Fe_2 = C_1 4$	2.052 (5)	C14 - C13	1.411 (4)
Data	- 114:				Fe2-C15	2.017 (2)	C16C20	1 416 (5)
Data co	ollection				Fe2-C17	2.031 (3)	C16C21	1.513 (4)
Enraf-l	Nonius CAD-4	22	75 observed re	flections	Fe2-C18	2.057 (3)	C17-C18	1.423 (4)
diffra	actometer		$[F_o > 3\sigma(F_o)]$		Fe2-C19	2.041 (3)	C18-C19	1.400 (5)
1.17A se	ang	R.	0.015		Fe2-C20	2.025 (3)	C19-C20	1.409 (4)
Abaam	tion composion		= 0.015		C1—C2	1.432 (4)	C21C22	1.504 (3)
Absorp	don correction	σ _m	$\theta_{\rm max} = 25^{\circ}$		C1—C5	1.427 (4)	C22—C23	1.335 (4)
empi	rical, based on	8ψ h	$h = 0 \rightarrow 9$		C1—C23	1.479 (3)		
scan	S	<i>k</i> =	$k = -11 \rightarrow 11$		C1Fe1C2	41.0(1)	C11-Fe2-C20	110.1 (1)
T_{\min}	$= 0.793, T_{\rm max}$	= l=	$= -13 \rightarrow 13$		C1—Fe1—C3	68.7 (1)	C12-Fe2-C13	40.4 (1)
0.99	7	3 :	standard reflect	ions	C1—Fe1—C4	68.6 (1)	C12-Fe2-C14	68.0 (1)
3078 m	neasured reflect	ions	frequency: 100 min		C1—Fe1—C5	40.8 (1)	C12—Fe2—C15	68.8 (1)
2923 ir	dependent refl	ections	intensity decay	· 2%	C1 - Fe1 - C6	108.3 (1)	C12—Fe2—C16	112.2 (1)
2/25 1	idependent ten	cetions	intensity decay	. 270	CI = FeI = C/	125.4 (1)	C12—Fe2— $C17$	106.5 (1)
D					$C_1 - F_{e_1} - C_0$	102.1(1)	C12 - Fe2 - C18 C12 - Fe2 - C19	131.0(1)
Kejinen	neni				C1 - Fe1 - C10	130.2(1) 121 2(1)	$C12 - Fe^2 - C20$	1458(1)
Refiner	ment on F	w	$= 1/[\sigma^2(I) + (0)]$	$(1.04F^2)^2$	C2—Fe1—C3	40.7 (1)	C13—Fe2—C14	40.1 (1)
R = 0.0	38	(A	$\sqrt{\sigma}$ = 0.04	, ,	C2-Fe1-C4	68.3 (1)	C13-Fe2-C15	68.2 (1)
wR = 0	048	$\overline{\lambda}$	-0.93(17)	$\lambda = \dot{\Delta}^{-3}$	C2—Fe1—C5	68.3 (1)	C13Fe2C16	150.1 (1)
S = 10	1070 107		$S_{\text{max}} = 0.00(17)$	$\lambda = \lambda^{-3}$	C2—Fe1—C6	121.7 (1)	C13-Fe2-C17	122.5 (1)
3 - 1.0	·02	Δ_{j}	$D_{\min} = 0.00(17)$) C A	C2—Fe1—C7	107.9 (1)	C13-Fe2-C18	116.3 (1)
2920 re	enections	At	omic scattering	factors	C2—Fe1—C8	124.8 (1)	C13-Fe2-C19	135.4 (1)
306 pai	rameters		from Internatio	onal Tables	C2—FeI—C9	161.5(1)	C13-Fe2-C20	168.1 (1)
All H a	atoms refined	ند	for X-ray Crys	tallography	C_2 —Fe1—C10 C3—Fe1—C4	A04(1)	C14-Fe2-C13	40.0(1)
isotropically			(1974, Vol. IV)		C3-Fe1-C5	68.1 (1)	C14 - Fe2 - C17	158.7 (1)
					C3—Fe1—C6	156.4 (1)	C14-Fe2-C18	126.8 (1)
Table	1. Fractional	atomic coo	ordinates and	equivalent	C3-Fe1-C7	120.9 (1)	C14-Fe2-C19	114.2 (1)
isotropic displacement parameters (\dot{A}^2)					C3-Fe1-C8	107.4 (1)	C14-Fe2-C20	128.1 (1)
	isotropic un	spracement		.,	C3-Fe1-C9	124.6 (1)	C15—Fe2—C16	119.7 (1)
	Be	$n = (4/3)\sum_i \sum_i$	$\beta_{ii} \mathbf{a}_{i} \cdot \mathbf{a}_{i}$		C3—Fe1—C10	161.5 (1)	C15—Fe2—C17	158.7 (1)
				D	C4—Fe1—C5	40.5 (1)	C15—Fe2—C18	156.0(1)
Fel	x 0.03706.(5)	0 32000 (4)	Z 0.68219 (3)	D_{eq}	C4—FeI—Co	162.2(1)	C15—Fe2—C19	119.2 (1)
Fe?	0.60510(5)	0.32999 (4)	0.08219(3) 0.78998(3)	2.235 (8)	C4—Fe1—C7	133.0(1)	C15—Fe2—C20 C16—Fe2—C17	41 2 (1)
CI	0.0842 (3)	0.5224(3)	0.7839(2)	2.35 (5)	C4—Fe1—C9	107.6 (1)	C16 - Fe2 - C18	69.2 (1)
C2	-0.0198 (4)	0.4074 (3)	0.8347 (2)	2.82 (6)	C4-Fe1-C10	125.0 (1)	C16—Fe2—C19	69.1 (1)
C3	-0.1831 (4)	0.3420 (3)	0.7567 (3)	3.33 (6)	C5-Fe1-C6	125.9 (1)	C16-Fe2-C20	41.1 (1)
C4	-0.1831 (4)	0.4136 (3)	0.6575 (3)	3.49 (7)	C5-Fe1-C7	162.6 (1)	C17—Fe2—C18	40.8 (1)
C5	-0.0197 (4)	0.5235 (3)	0.6731 (3)	2.78 (6)	C5—Fe1—C8	155.6 (1)	C17-Fe2-C19	68.0 (1)
C6	0.2830 (4)	0.2882 (3)	0.6708 (3)	3.06 (6)	C5—Fe1—C9	121.0(1)	C17-Fe2-C20	68.4 (1)
C7	0.1691 (4)	0.1747 (3)	0.7145 (3)	3.18 (6)	C5—Fe1—C10	108.1 (1)	C18—Fe2—C19	40.0 (1)
C8	0.0105 (4)	0.1192 (3)	0.6306 (3)	3.62 (7)	Co-Fel-C7	40.4 (1)	C18Fe2C20	68.0(1)

C9	0.0268 (4)	0.1983 (3)	0.5356 (3)	3.72 (7)
C10	0.1954 (4)	0.3036 (3)	0.5606 (3)	3.34 (6)
C11	0.3490 (3)	0.7188 (3)	0.7536 (2)	2.17 (5)
C12	0.3494 (4)	0.8655 (3)	0.7517 (2)	2.47 (5)
C13	0.4520 (4)	0.9223 (3)	0.6680 (2)	2.97 (6)
C14	0.5131 (4)	0.8117 (3)	0.6148 (2)	3.02 (6)
C15	0.4486 (4)	0.6864 (3)	0.6657 (2)	2.76 (6)
C16	0.6606 (4)	0.7937 (3)	0.9520 (2)	2.72 (6)
C17	0.7109 (4)	0.9444 (3)	0.9513 (2)	3.11 (6)
C18	0.8436 (4)	0.9784 (4)	0.8775 (3)	3.61 (7)
C19	0.8761 (4)	0.8499 (4)	0.8346 (3)	3.86 (7)
C20	0.7672 (4)	0.7367 (3)	0.8813 (3)	3.39 (6)
C21	0.5153 (4)	0.7117 (3)	1.0137 (2)	3.13 (6)
C22	0.3367 (4)	0.6243 (3)	0.9437 (2)	2.74 (6)
C23	0.2634 (3)	0.6221 (3)	0.8333 (2)	2.20 (5)

C6—Fe1—C8	67.8 (1)	C19-Fe2-C20	40.5 (1)
C6—Fe1—C9	67.8 (1)	Fe1-C1-C2	68.6 (1)
C6—Fe1—C10	40.4 (1)	C3-C4-C5	108.1 (2)
C7-Fe1-C8	40.4 (1)	Fe1-C1-C5	68.8 (1)
C7-Fe1-C9	67.9 (1)	Fe1-C1-C23	127.2 (2)
C7-Fe1-C10	68.1 (1)	C2-C1-C5	106.3 (2)
C8—Fe1—C9	40.4 (1)	C2-C1-C23	128.1 (2)
C8-Fe1-C10	68.1 (1)	C5-C1-C23	125.6 (2)
C9Fe1C10	40.5 (1)	Fe1-C2-C1	70.4 (2)
C11—Fe2—C12	41.6(1)	Fe1-C2-C3	69.5 (2)
C11-Fe2-C13	69.6 (1)	C1-C2-C3	108.4 (2)
C11-Fe2-C14	69.6 (1)	Fe1-C3-C2	69.8 (2)
C11—Fe2—C15	41.8 (1)	Fe1-C3-C4	70.0 (2)
C11-Fe2-C16	97.0 (1)	C2-C3-C4	108.3 (2)
C11-Fe2-C17	120.9 (1)	Fe1-C4-C3	69.5 (2)
C11-Fe2-C18	161.5 (1)	Fe1-C4-C5	69.8 (2)
C11-Fe2-C19	147.6(1)	Fe1-C5-C1	70.4 (2)
Fe1-C5-C4	69.7 (2)	Fe2-C14-C13	70.1 (2)
C1C5C4	108.9 (3)	Fe2-C14-C15	68.4 (1)
Fe1-C6-C7	69.9 (2)	C13-C14-C15	108.1 (3)
Fe1-C6-C10	69.9 (2)	Fe2-C15-C11	68.1 (1)
C7-C6-C10	108.5 (2)	Fe2-C15-C14	71.1 (1)
Fe1-C7-C6	69.7 (2)	C11-C15-C14	108.7 (3)
Fe1-C7-C8	69.7 (2)	Fe2-C16-C17	70.4 (2)
C6C7C8	107.7 (3)	Fe2-C16-C20	70.2 (2)
Fe1-C8-C7	69.9 (2)	Fe2-C16-C21	122.7 (2)
Fe1-C8-C9	69.9 (2)	C17-C16-C20	106.9 (3)
C7-C8-C9	108.1 (3)	C17-C16-C21	125.8 (3)
Fe1—C9—C8	69.8 (2)	C20-C16-C21	127.3 (3)
C12-C11-C23	126.0 (2)	Fe2-C17-C16	68.4 (1)
C15C11C23	127.8 (2)	Fe2-C19-C18	70.6 (2)
Fe2-C12-C11	67.9 (2)	Fe2-C19-C20	69.1 (2)
Fe2-C12-C13	71.1 (2)	C18-C19-C20	108.7 (3)
C11-C12-C13	109.0 (3)	Fe2-C20-C16	68.6 (2)
Fe1-C9-C10	69.8 (2)	Fe2-C20-C19	70.3 (2)
C8-C9-C10	108.2 (3)	C16-C20-C19	108.5 (3)
Fe1-C10-C6	69.8 (2)	Fe2-C17-C18	70.6 (2)
Fe1-C10-C9	69.8 (2)	C16-C17-C18	108.4 (3)
C6-C10-C9	107.5 (3)	Fe2-C18-C17	68.6 (1)
Fe2-C11-C12	70.5 (1)	Fe2-C18-C19	69.4 (2)
Fe2—C11—C15	70.1 (1)	C17—C18—C19	107.5 (3)
Fe2-C11-C23	123.5 (2)	C16-C21-C22	119.2 (2)
C12-C11-C15	106.2 (2)	C21-C22-C23	131.1 (3)
Fe2-C13-C12	68.5 (2)	C1-C23-C11	115.7 (2)
Fe2-C13-C14	69.8 (2)	C1-C23-C22	120.4 (2)
C12-C13-C14	107.9 (3)	C11-C23-C22	123.9 (2)

The *MULTAN11/82* program system (Main, Fiske, Hull, Lessinger, Germain, Declercq & Woolfson, 1982) was used to solve the structure.

We thank Messrs Anthony DiCristifaro and Jens John for carrying out the reactions and isolating the product. The structure was solved under the auspices of the second American Crystallographic Association Summer School at the University of Pittsburgh in August, 1993. We gratefully acknowledge the assistance of Dr John Ruble (Pittsburgh) and Dr Graheme Williams (Enraf-Nonius Co.) in this connection.

Lists of structure factors, anisotropic displacement parameters, Hatom coordinates, complete geometry and r.m.s. amplitutes have been deposited with the IUCr (Reference: BK1059). Copies may be obtained through The Managing Editor, International Union of Crystallography, 5 Abbey Square, Chester CH1 2HU, England.

References

© 1995 International Union of Crystallography Printed in Great Britain – all rights reserved

- Gyepes, E., Glowiak, T. & Toma, Š. (1986). J. Organomet. Chem. **316**, 163–168.
- Hillman, M. & Austin, J. D. (1987). Organometallics, 6, 1737-1743. Johnson, C. K. (1976). ORTEPII. Report ORNL-5138. Oak Ridge National Laboratory, Tennessee, USA.
- Jones, N. D., Marsh, R. E. & Richards, J. H. (1965). Acta Cryst. 19, 330-336.
- Lecomte, C., Dusausoy, Y., Protas, J. & Moïse, C. (1973). Acta Cryst. B29, 1127-1132.
- Main, P., Fiske, S. J., Hull, S. E., Lessinger, L., Germain, G., Declercq, J.-P. & Woolfson, M. M. (1982). MULTAN11/82. A System of Computer Programs for the Automatic Solution of Crystal Structures from X-ray Diffraction Data. Univs. of York, England, and Louvain, Belgium.
- Singletary, N. J., Hillman, M., Dauplaise, H., Kvick, A. & Kerber, R. C. (1984). Organometallics, 3, 1427–1434.
- Turbitt, T. D. & Watts, W. E. (1972). J. Organomet. Chem. 46, 109– 117.

Acta Cryst. (1995). C51, 873–876

The 7,7,8,8-Tetracyanoquinodimethane Salt of (*C-meso-5,5,7,12,12,14-Hexamethyl-*1,4,8,11-tetraazacyclotetradecane)nickel(II), [Ni(*C-meso-Me*₆[14]aneN₄)](TCNQ)₂

M. CARMEN MUÑOZ

Departamento de Física Aplicada, Universidad Politécnica de València, Camino de Vera s/n, 46071 València, Spain

JUAN CANO, RAFAEL RUIZ, FRANCESC LLORET AND JUAN FAUS

Departament de Química Inorgànica, Facultat de Química de la Universitat de València, Dr Moliner 50, 46100 Burjassot, València, Spain

(Received 25 February 1994; accepted 12 September 1994)

Abstract

The title compound, $[Ni(C_{16}H_{36}N_4)](C_{12}H_4N_4)_2$, consists of cationic (*C-meso*-5,5,7,12,12,14-hexamethyl-1,4,8,11-tetraazacyclotetradecane)nickel(II) entities and 7,7,8,8-tetracyanoquinodimethane anions. The Ni atom is surrounded by four N atoms from the tetraaza macrocycle in a square-planar arrangement. The average Ni—N distance is 1.953 (3) Å. The TCNQ⁻ radical anions are arranged so as to form discrete dimers with the usual twist-type π overlap which leads to a diamagnetic ground state. The intra- and interdimer separations between the mean molecular planes within a TCNQ column are 3.081 (5) and 5.113 (5) Å, respectively.

Dong, T.-Y., Lin, H.-M., Hwang, M.-Y., Lee, T.-Y., Tseng, L.-H., Peng, S.-M. & Lee, G.-H. (1991). J. Organomet. Chem. 414, 227– 244.